

Magnetic couplings

Types and operating description	264
MINEX [®] -S	000
Containment shroud – material stainless steel Containment shroud – material Hastelloy	266
Containment shroud – material PEEK	270
Containment shroud – material oxide ceramics	272
Conversion kits and customised subassemblies	274
Other types	275

MINEX[®]-H Hysteresis coupling

276

Please note: Higher pressure resistance

Years of experience with applications at customer sites and additional test series in the KTR test field in Rheine enabled us to determine potentials allowing for an increase of pressure resistance with some sizes of this series.

MINEX[®]-S

MAGNETIC COUPLINGS TYPES AND OPERATING DESCRIPTION

General information

General description

MINEX[®]-S magnetic couplings transmit the torque without contact through magnetic forces between the internal and external rotor. They ensure hermetic separation between driving and driven side in pumps and agitators sealing hazardous liquids and gases reliably. As a result they prevent serious leakages operating as a reliable alternative to usual dynamic shaft seals.

Run of flux lines

Operation/design

The coupling consists of an external and an internal rotor. The external rotor has high-quality, permanent magnets of changing polarity on the inner side while the internal rotor has got them on the outside.

The external rotor is usually fixed on the drive side and the magnets are bonded in the keyways. The magnets of the internal rotor on the driven side are fully encapsulated.

Torque transmission

In their non-operative states the north and south poles of the rotors face each other and the magnetic field is completely symmetric. It is only when the rotors are twisted that the magnetic field lines are deflected, hence the torque is transmitted through the air gap. Then there is a synchronous operation under a constant torsion angle. If the maximum coupling torque and the maximum torsion angle are exceeded, the power transmission is interrupted.

Sealing function

The containment shroud that is fixed to the housing separates internal and external rotor from each other.

It ensures a completely leak-proof separation of product and atmosphere.

The sealing is made statically, e. g. with a flat gasket or an O-ring, thus eliminating the need to use dynamically loaded sealing elements.

As a standard KTR supplies both metallic and non-metallic containment shrouds.

The metallic types cover the widest application range, yet causing eddy current losses which might require cooling measures. If eddy current losses have to be entirely excluded, the energy-efficient alternative materials PEEK and ceramics are available.

Use in potentially explosive atmospheres

MINEX[®] couplings are suitable for power transmission in drives in potentially explosive atmospheres. The types with metallic, ceramic and PEEK containment shrouds are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

Please read through our information included in the respective type examination certificate and the operating and assembly instructions at **www.ktr.com**.

MAGNETIC COUPLINGS TYPES AND OPERATING DESCRIPTION

Properties of magnetic couplings

Product	Type with metallic containment shroud	Type with containment shroud made of PEEK CFRP	Type with containment shroud made of oxide ceramics
Туре		Permanent-magnetic synchronous coupling	
Properties	1		
Permanent-magnetic	•	•	• /
Contactless	•	•	• ~
Maintenance-free	•	•	• 0
Torsionally flexible	•	•	•
Low vibrations	•	•	• 4
Special features/applications			a de la companya de l
	most common type	no eddy cu	rrent losses
	covering the widest performance range	energy-efficient	t and economic
	particularly suitable for pump drives/	particularly suitab	le for dry running
	applications with liquids	for average requirements on tmax [°C]	high t _{max} [°C] and p _{max} [bar]
	high t _{max} [°C] and p _{max} [bar]	and p _{max} [bar]	
Torque range T _{KN} [Nm]			
Max.	1,000	600	600
Max. pressure resistance [bar]			0)
Pmax.	up to 90 bars depending on size	up to 16 bars with 130 °C	up to 25 bars depending on size
Geometries			
shaft diameter min./max. [mm]	Ø5 pilot bored	Ø5 pilot bored	Ø5 pilot bored
Max. temperature resistance [°C]			
t _{max.}	150/300 depending on magnet material	130	300
Certifications/type examinations			
ATEX EX		CFRP reinforce- ment Ment	•
	for further details see catalogue pages 268 - 271	for further details see catalogue pages 272 - 273	for further details see catalogue pages 274 - 275

Torque reduction with temperature increase

Temporary torque reduction with increased temperature for alternative material combinations [%].

Please note:

KTR recommends to use NdFeB magnets for the external rotor, provided that the operating temperature falls below 150 °C.

Containment shroud - material stainless steel

				Techn	ical data	- Interna	l rotor an	d contair	nment sh	roud				
						G	Di	mensions [m	m]					
0	TK max [Nm]				Internal rotor						Containm	ent shroud		
Size	with 20 °C	Finish b	ore 1) dj				5	ગ						
		min.	max.	D _{l1}	L ₁₁	GI	min.	max.	D _{S1}	D _{S2}	D _{S3}	D _{S4}	ZS	LS
SA 22/4	0.15	5	9	20	20	M3	2.0	2.0	21.5	38	46	4.5	8	29
SA 34/10	1	5	12	20	22	M3	2.0	5.5	34	46	55	4.5	4	30.5
SA 46/6	3	8	16	28	33	M4	6.5	7.0	46	64	78	4.5	8	45
SA 60/8	7	10	00	35	36.3	M5	1.7	5.5	FO	75	00		0	50
SB 60/8	14	12	22	36	56	M5	0.0	4.0	59	/5	89	5.5	8	70.3

				Technica	al data – Ex	ternal rotor	and genera	l i i i i i i i i i i i i i i i i i i i			
						Dimensions [mi	m]				
Cine				Exter	nal rotor					General	
Size	Finish b	ore ¹⁾ da								Lto	otal
	min.	max.	D _{A1}	D _{A2}	GA	L _{A1}	L _{A2}	LA3	ΔS	min.	max.
SA 22/4	5	11	18	38	M4	35	8.5	11	5	42	42
SA 34/10	5	14	22	53	M4	38.8	10.5	13	5.3	46	49.5
SA 46/6	5	24	40	69.5	M5	53	16	22	9	69	69.5
SA 60/8	9	32	50	04.5	M6	66	19	28	10	80	83.3
SB 60/8	9	38	50	94.0	M8	93.3	15	30	12	105.2	109.2
00/0/0	3	30			1010	33.5	10	00		100.2	109.2

¹⁾ Bores H7 with keyway to DIN 6885 sheet 1 [JS9]

	MINEX® SA 60/8	NdFeB	d _i Ø20 mm	d _a Ø24 mm
example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C	Finish bore (H7), fea DIN 6885 sl	ather keyway acc. to heet 1 (JS9)

MINEX[®] couplings with containment shroud made of stainless steel are the most common type for pump drives and other applications with liquids in the lower performance range. Subject to their high resistance to pressure and temperature they cover a wide application range. The magnetic rotors are available from stock in an unbored or pilot bored design. If requested, the parts can be finish bored according to ISO fit H7 and provided with feather keyway to DIN 6885 sheet 1 [JS9].

Inside the rotating magnetic field metallic containment shrouds generally cause losses of eddy current which are converted into heat and which may require cooling measures. On applications with pumps the heat generated can usually be dissipated by the medium to be pumped. If higher pressure resistance than covered by the KTR standard is required, KTR provides for customised special solutions.

Typical applications: gear pumps, centrifugal pumps, screw spindle pumps, agitators, PU foaming lines

Use in potentially explosive atmospheres

MINEX[®] couplings with containment shroud made of stainless steel are suitable for power transmission in drives used in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective type examination certificate and the operating and assembly instructions at www.ktr.com.

						1				
			Technical	data – Materi	als, tempera	ture and pres	ssure resistar	nce		
	-		Internal rotor			Containment shrou	d	External re	otor (+ flange hub	optionally)
Size	IK max [Nm]	Standard	d material	Max. temperature	Standard	d material	Max. pressure	Standard	d material	Max. temperature
	With 20 0	Hub	Magnets	t _{max.} [°C]	Hub	Cont. shroud	P _N /P _{max.} [bar]	Hub	Magnets	t _{max.} [°C]
SA 22/4	0.15	1.4462	NdFeB	150	1.4571	1.4571	60/90	S355J2	NdFeB	150
SA 34/10	1	1.4462	NdFeB	150	1.4571	1.4571	16/24	S355J2	NdFeB	150
SA 46/6	3	1.4571	Sm2Co17	300	1.4571	1.4571	16/24	S355J2	Sm2Co17	300
SA 60/8	7	1.4571	Sm2Co17	300	1.4571	1.4571	40/60	S355J2	Sm2Co17*	300
SB 60/8	14	1.4571	Sm2Co17	300	1.4571	1.4571	40/60	S355J2	Sm2Co17*	300

*) External rotor alternatively available with magnets made of NdFeB (t_{max.} = 150 °C)

Containment shroud – material Hastelloy

			Technical	data - Materi	ials, tempera	ture and pre	ssure resistar	nce		
	T [1]		Internal rotor		2	Containment shrou	ıd	External r	otor (+ flange hub	optionally)
Size	IK max [Nm]	Standard	d material	Max. temperature	Standar	d material	Max. pressure	Standar	d material	Max. temperature
	With 20 0	Hub	Magnets	t _{max.} [°C]	Hub	Cont. shroud	P _N /P _{max.} [bar]	Hub	Magnets	t _{max.} [°C]
SA 75/10	10	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SB 75/10	24	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SC 75/10	40	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SB 110/16	60	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 110/16	95	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SB 135/20	100	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 135/20	145	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SD 135/20	200	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 165/24	210	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SD 165/24	280	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SE 165/24	370	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SD 200/30	460	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SE 200/30	600	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SD 250/38	670	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SE 250/38	820	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SF 250/38	1000	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300

*) External rotor alternatively available with magnets made of NdFeB (t_{max.} = 150 °C)
**) Containment shroud size 75 alternatively available made of stainless steel 1.4571 (P_N/P_{max} = 16/24 bars)

A I I	MINEX® SB 75/10	NdFeB	d _i Ø20 mm	d _a Ø24 mm	Hastelloy
example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C	Finish bore (H7) acc. to DIN 688	, feather keyway 5 sheet 1 (JS9)	Containment shroud type Stainless steel 1.4571 or Hastellov

MINEX[®] couplings with containment shroud made of Hastelloy are the most common type for pump drives and other applications with liquids in the average and higher performance range. Subject to their high resistance to pressure and temperature they cover a wide application range.

Inside the rotating magnetic field metallic containment shrouds generally cause losses of eddy current which are converted into heat and which may require cooling measures. On applications with pumps the heat generated can usually be dissipated by the medium to be pumped. If higher pressure resistance than covered by the KTR standard is required, KTR provides for customised special solutions.

Typical applications: gear pumps, centrifugal pumps, screw spindle pumps, agitators, PU foaming lines

Use in potentially explosive atmospheres

MINEX[®] couplings with containment shroud made of Hastelloy are suitable for power transmission in drives used in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective type examination certificate and the operating and assembly instructions at www.ktr.com.

	Technical data – External rotor and general																										
												[Dimens	sions [mm]	Y											
		I	nterna	ıl roto	r				Con	tainme	ent shr	oud			Ext	ernal r	rotor			F	lange	hub				Genera	al
Size	Finish	bore 1)	DI1	LI1	GI	9	à	DS1	DS2	DS3	DS4	ZS	LS	DA1	D _{A2}	DA3	LA1	GA	d _{f max.}	DF1	DF2	LF1	LF2	GF	ΔS	Total le (with flai	ength ²⁾ nge hub)
	d _{i min.}	d _{i max.}				min.	max.				/															min.	max.
SA 75/10				39.5			46.5										41.3								10.0	140	1645
SB 75/10	12	32	45	58	M6	4	26.5	75	100	118	9	8	102	90	100	110	61.3	M6	42	60	114	64.5	35.5	M8	12.2	142	104.5
SC 75/10				80			4.0										83.8								14.2	166.5	166.5
SB 110/16	14	EE		65	MO	4	35.0	110	100	150		10	115	100	105	1.45	61.3	MC		0.5	150	00 F	50 F		107	183.5	0145
SC 110/16	1 14	55	80	85		4	15.0	110	133	153	9	12	115	120	135	145	81.3	IVIO	55	85	150	99.5	59.5		18.7	203.5	214.5
SB 135/20				65			50.5										70.3								100	100 5	
SC 135/20	20	70	90	85	M10	4	30.5	135	158	178	9	16	139	150	160	170	90.3	M6	70	100	170	65.5	48.5	M12	18.2	190.5	204.5
SD 135/20	1			110	1		8.0										110.3								20.7	200.5	
SC 165/24				85			61.5										90.3								18.2	000	
SD 165/24	24	80	110	110	M12	6	39.0	163.5	192	218	11	12	170	180	188	198	110.3	M6	75	110	198	77	60	M16		233	247
SE 165/24	1			130	1		19.0										130.3								20.7	234	
SD 200/30			100	105			04.6	0.00	050	0.70		10	100	040	0.00	0.00	100.0	140	0.0	100	0.00	100			05.5		
SE 200/30	38	90	130	135	M16	6	24.0	200	252	278	11	12	180	212	222	232	130.3	M6	80	120	232	120	98	M12	25.7	282	300
SD 250/38				115			46.0										110.3									282	
SE 250/38	38	100	165	135	M16	6	26.0	255	285	315	13.5	12	182	272	282	292	130.3	M6	100	150	300	140	93	M16	25.7	302	322
SF 250/38	1			155			6.0										150.3									322	

¹⁾ Bores H7 with keyway to DIN 6885 sheet 1 [JS9]

²⁾ Total length without flange hub = LS

MINEX[®]-H

Containment shroud – material PEEK

				Technic	al data –	Internal	rotor and	l containi	ment shr	oud				
							Dim	nensions [mm	ן		1.1		a_	
Cine	TK max [Nm]			Ir	nternal rotor						Containm	ent shr <mark>o</mark> ud		
Size	with 20 °C	Finish b	ore ¹⁾ dj				5	<u>SI</u>					\supset	
		min.	max.	D _{l1}	41	Gl	min.	max.	D _{S1}	DS2	D _{S3}	D _{S4}	ZS	$L_{S} = L_{total}$
SA 75/10	10				39.5		30.5	54.5				(5	
SB 75/10	24	12	32	45	58	M6	8.5	35.5	-	100	118	9	8	108
SC 75/10	40				80		5.5	13.5				11	1	
SB 110/16	70	14	55	80	65		4	25	140	151	168	<u>م</u>	10	115
SC 110/16	100	14	00	80	85	M8	2	5	140	151	100	9	12	115
SB 135/20	110				65		38.5	48				0		
SC 135/20	155	20	70	90	85	M10	18.5	28	157	167	180	6.6	12	144
SD 135/20	210			-	110		4	4				\mathcal{O}		
SC 165/24	220				85			32		. 0'				150
SD 165/24	300	24	80	110	110	M12	4	8	196	210	228	9	12	156
SE 165/24	390				130]	-6	-6				b-		165
SD 200/30	460	38	100	130	135	M16	2	4	220	246	265	0	10	183
SE 200/30	600	50	100	130	135	WITO	2	-	225	240	200	3	12	100

					Tech	nnical d <mark>ata –</mark> Externa	l rotor, fla	ange hub	and ger	eral				
		-				Dimensions [mm]			11.				
		E	xternal rot	or			F	lange hub		\sim			General	
Size	DA1	D _{A2}	DA3	LA1	GA	Max. finish bore ¹⁾ df	D _{F1}	DF2	LF1	LF2	GF	ΔS	Total le (with flai	ength ²⁾ nge hub)
									5				min.	max.
SA 75/10				41.3					N N			10.0	148.5	172.5
SB 75/10	90	100	110	61.3	M6	42	60	114 <	64.5	35.5	M8	12.2	148.5	172.5
SC 75/10				83.8								14.2	168	172.5
SB 110/16	130	138	150	61.3	M6	55	85	153	875	45.5	M10	187	172.5	193.5
SC 110/16	130	130	150	81.3	WIO	55	00	155	07.5	40.0	WITO	10.7	191.5	193.5
SB 135/20				70.3			~	~				(0.0	216	225.5
SC 135/20	158	167	176	90.3	M6	70	100	176	89	67	M12	18.2	216	225.5
SD 135/20				110.3								20.7	224	224
SC 165/24				90.3								18.5	231	234.8
SD 165/24	186	195	204	110.3	M6	75	110	204	94	70	M16		231	233.3
SE 165/24				130.3								21	254.3	254.3
SD 200/30 SE 200/30	212	222	232	130	M6	90	120	232	133	98	M16	25.7	288	290

 $^{1)}$ Bores H7 with keyway to DIN 6885 sheet 1 [JS9] $^{\ 2)}$ Total length without flange hub = L_S

echnical data

					rechnical	lala			
Cine	T _{K max}	Interna	al rotor		Conta	inment shroud		Extern (+ flange hu	al rotor ıb optionally)
Size		Standard	l material	Standard	l material	Max. pressure	Max. temperature	Standard	d material
	20 0	Hub	Magnets	Clamping ring	Cont. shroud	P _N [bar]	t _{max.} [°C]	Hub	Magnets
SA 75/10	10	1.4571	Sm2Co17	-	PEEK	16	130	S355J2	NdFeB
SB 75/10	24	1.4571	Sm2Co17	-	PEEK	16	130	S355J2	NdFeB
SC 75/10	40	1.4571	Sm2Co17	-	PEEK	16	130	S355J2	NdFeB
SB 110/16	70	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SC 110/16	100	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SB 135/20	110	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SC 135/20	155	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SD 135/20	210	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SC 165/24	220	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SD 165/24	300	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SE 165/24	390	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SD 200/30	460	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB
SE 200/30	600	1.4571	Sm2Co17	Aluminium	PEEK	16	130	S355J2	NdFeB

= Years of experience with applications at customer sites and additional test series in the KTR test field in Rheine enabled us to determine potentials allowing for an increase of the pressure resistance with some sizes of this series.

		MINEX® SB 75/10	NdFeB	d _i Ø20 mm	d _a Ø24 mm	PEEK
example:		Coupling size	NdFeB - t _{max.} = 150 °C	Finish bore (H7), f to DIN 6885	eather keyway acc. sheet 1 (JS9)	Containment shroud type

MINEX[®] couplings with countainment shroud made of PEEK are an economic, energy-efficient alternative to the metallic types. They do not generate any eddy current losses and as a result do not generate any heat so that usually expensive cooling measures can be done without. Moreover, they are characterized by low susceptibility to fracture, low weight and easy handling.

They are ideally suitable for applications with low demands on temperature and pressure resistance.

Typical applications: vacuum pumps, fan drives, compressors, agitators, PU foaming lines

Use in potentially explosive atmospheres

MINEX[®] couplings with containment shrouds made of carbon fibre reinforced PEEK are suitable for power transmission in drives in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective type examination certificate and the operating and assembly instructions at **www.ktr.com**.

Containment shroud - material oxide ceramics

Technical data – Internal rotor and containment shroud														
Size	T _{K max} [Nm]	Internal rotor									Containm	ent shroud		
0120	with 20 °C	Finish b	ore ¹⁾ dj	Du	Lы	GL	S	i	Det	Dea	Dea	Dea	70	
		min.	max.			ς,	min.	max.	531	532	033	034	3	
SB 60/8	14	10	22	36	56	M5	1	21	75	80	00	5.5	6	02
SC 60/8	22	12	22		76	1015	1	2	75	02	35	0.0	0	92
SB 75/10	24	10	20	45	58	MG	6.5	30.5	80	100	110	0//	0	109
SC 75/10	40	12	52	43	80	IVIO	0.0	8.5	09	100	110	9	0	108
SB 110/16	70	14	55	70	65	MQ	4	28.0	120	151	169	0	10	115
SC 110/16	100	14		12	85	IVIO	4	9.0	132	101	100	0	12	115
SB 135/20	110				65			46.5		~	/			
SC 135/20	155	20	70	90 🦰	85	M10	4	26.5	157	167	180	6.6	12	143
SD 135/20	210				110			4.0		0.		-		
SC 165/24	220				85			28.0			57			150
SD 165/24	300	24	90	110	110	M12	4	4.0	196	210	228	9	12	150
SE 165/24	390				130			17.0						185
SD 200/30	460			100	105						0.05		10	105
SE 200/30	600	38	90	130	135	M16	4	4.0	229	246	265	9	12	185

Technical data - External rotor, flange hub and general

					4									
		E	xternal rot	or		Flange hub						General		
Size	DA1	D _{A2}	D _{A3}	LA1	GA	Max. finish bore ¹⁾ df	DF1	DF2	LF1	LF2	GF	ΔS	Total length ²⁾ (with flange hub)	
													min.	max.
SB 60/8	76	84	94	79.5	M6	38	60	94	42	38	M6	12.5	135	156
SC 60/8)					
SB 75/10	90	100	110	61.3	M6	42	80	114	84.5	35.5	M6	11.9	148.5	170.4
SC 75/10	00	100	110	83.8	INIC	72	00		04.0	- 510	ivio	13.9	170.5	170.4
SB 110/16	130	138	150	61.3	M6	55	85	153	87.5	45.5	M10	187	171.5	195.5
SC 110/16	100	100	100	81.3	IVIO	00	00	00 100		40.0		10.7	191.5	196.5
SB 135/20				70.3								19.0	215	224
SC 135/20	158	167	176	90.3	M6	70	100	176 89	89	67	M12	10.2	215	224
SD 135/20				110.3								20.7	220	220
SC 165/24				90.3		()						18.5	225	230.5
SD 165/24	186	195	204	110.3	M6	75	110	204	94	70	M16	00.7	229	229
SE 165/24				130.3								20.7	260	260
SD 200/30 SE 200/30	212	222	232	130.3	M6	80	120	240	120	88	M16	25.7	280	280

 $^{\rm 1)}$ Bores H7 with keyway to DIN 6885 sheet 1 [JS9] $^{\rm 2)}$ Total length without flange hub = LS

	Technical data												
	T [N] 1		Internal rotor		(Containment shrou	d	External rotor (+ flange hub optionally)					
Size	K max [INM]	Standard	d material	Max. temperature	Standard	l material	Max. pressure	Standard	Max. temperature				
	with 20 C	Hub	Magnets	t _{max.} [°C]	Hub	Cont. shroud	P _N /P _{max} , [bar]	Hub	Magnets	t _{max.} [°C]			
SB 60/8	14	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	40/60	S355J2	Sm2Co17	300			
SC 60/8	22	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	40/60	S355J2	Sm2Co17	300			
SB 75/10	24	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	40/60	S355J2	Sm2Co17	300			
SC 75/10	40	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	40/60	S355J2	Sm2Co17	300			
SB 110/16	60	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SC 110/16	95	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SB 135/20	100	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SC 135/20	145	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SD 135/20	200	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SC 165/24	210	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SD 165/24	280	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SE 165/24	370	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SD 200/30	460	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			
SE 200/30	600	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300			

Oudering	MINEX® SB 135/20	NdFeB	d _i Ø20 mm	d _a Ø24 mm	Oxide ceramics ZrO2MgO
example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C	Finish bore (H7), f to DIN 6885	eather keyway acc. sheet 1 (JS9)	Containment shroud type

Like with the types with containment shroud made of PEEK, MINEX[®] couplings with containment shroud made of ceramics are an economic, energy-efficient alternative to the metallic types. Again they do not generate any eddy current losses and as a result do not generate any heat so that usually expensive cooling measures can be done without. Compared to PEEK, the containment shrouds made of ceramics are characterized by higher resistance to pressure and an excellent temperature resistance.

Typical applications: vacuum pumps, fan drives, compressors, agitators, PU foaming lines

Use in potentially explosive atmospheres

MINEX[®] couplings with containment shrouds made of oxide ceramics are suitable for power transmission in drives used in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

Please read through our information included in the respective type examination certificate and the operating and assembly instructions at **www.ktr.com**.

Conversion kits and customised subassemblies

On request KTR provides customised special solutions in combination with KTR hydraulic components, allowing to easily retrofit existing systems with MINEX[®]-S.

Conversion kits for PUR foaming processes

When conveying and proportioning the media polyol and isocyanate in the processing plants for PUR, ambient air has to be prevented from penetrating into the process, since otherwise adverse reactions may be generated.

For a reliable sealing of such drives KTR provides standard conversion kits, among others for axial piston pumps type REXROTH A2VK/A7VK and ROTARY POWER C series offering the following benefits:

- maintenance-free operation
- downtimes are considerably reduced
- no more problems with sealing
- better efficiency and process reliability

The subassemblies are available for all motor-pump-combinations and in various materials.

Maintenance-free sealing of proportioning pumps for polyol and isocyanate in high-pressure reaction moulding machines

Pump data		Moto	r data (4 poles, n=1500	rpm)	Coupling data			
Pump	Туре	Engine	Power [kW]	Torque T _N	Size	Max. torque T _{K max}	Bellhousings	
		132 S	5.5	35 Nm	SB 110/16	60 Nm		
	A2/A7VK-12	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL 300/13/	
		160 M	11	70 Nm	SC 135/20	145 Nm		
		160 M	11	70 Nm	SC 135/20	145 Nm		
	A2/A7VK-28	160 L	15	96 Nm	SD 135/20	200 Nm	PL 350/7	
REXROTH A2VK/A7VK		180 M	18.5	118 Nm	SD 135/20	200 Nm		
		160 L	15	96 Nm	SC 165/24	210 Nm	PL 250/7/	
		180 M	18.5	118 Nm	SC 165/24	210 Nm	FE 330/7/	
	A2/A7VK-55	180 L	22	144 Nm	SD 165/24	280 Nm	PL350/7/	
		200 L	30	196 Nm	SE 165/24	280 Nm	PL400/5/	
		225 S/M	37/45	240/292 Nm	SE 165/24	370 Nm	PL450/3/	
	A2/A7VK-107	225 S/M	37/45	240/292 Nm	SE 165/24	370 Nm	PL400/5/	
	C 01	100L	2.2	14 Nm	SB 75/10	24 Nm	PK 250/13/	
	C 04	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL300/13/	
	C 07	132 S	5.5	35 Nm	SB 110/16	60 Nm	PL300/13/	
ROTART FOWER C-Range	0.07	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL300/13/	
	C20	160 L	15	96 Nm	SD 135/20	200 Nm	PL 350/7/	
	020	180 M	18.5	118 Nm	SD 135/20	200 Nm	PL 350/7/	

Other types

Hysteresis coupling

					λ.				Tech	nica	l dat	a		D		
	Size	Overload torque	Finish bore da/di max [mm]	DA1	DAD	1.4.1	Di		ons [m	m]	110	GA	G	PV perm 20 °C [W]	Max. speed	Max. temperature tmax [°C]
ł	HA 48/12	1.2	16	82	35	80	7	35	35	41	7	M4	M4	80	1800	120
1	HB 48/12	2.4	16	82	35	100	7	35	35	61	7	M4	M4	88	1800	120
[HA 60/16	2	22	94	45	80	7	35	45	41	7	M5	M5	87	1800	120
	HB 60/16	4	22	94	45	100	7	35	45	61	7	M5	M5	96	1800	120
	HA 71/20	3	32	114	55	80	7	35	55	41	7	M8	M8	98	1800	120
ſ	HB 71/20	6	3 <mark>2</mark>	114	55	100	7	35	55	61	7	M8	M8	110	1800	120

Technical selection:

Ordening	MINEX® HB 60/16	d _i Ø18 mm	d _a Ø20 mm		
example:	Coupling size	Finish bore (H7), feather keyway	acc. to DIN 6885 sheet 1 (JS9)		

Torque curve with overload

The MINEX®-H transfers the torque contactlessly by means of magnetic forces and serves as a wear-free torque limiter in case of overload.

Function standard mode:

The torque is transmitted from the drive to the output element contactlessly by means of magnetic forces. The speed is synchronously transmitted as long as the operating torque is below the selection torque (slip torque).

MINEX[®]-S

Function of overload mode:

As soon as the operating torque exceeds the selection torque, the coupling slips and a relative speed sets in between the drive and output side. During this, the hysteresis material is continuously reversed and heats up. The selection torque is almost constant in case of an overload. As the relative speed increases, the slip torque increases due to the eddy current effect.

Torque curve with overload

Characteristics:

- Contactless torque transmission by means of magnetic forces
- Wear-free torque limitation
- Maintenance-free

Examples of application:

Filling systems Film winder

Load-holding

Very good repeatability of torque

Applicable as a coupling or brake

Unwinding and winding equipment

Materials handling

Medical technology

277